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Abstract: N = 6 superconformal Chern-Simons theory with gauge group U(M)×U(N)

is dual to N M2-branes and (M − N) fractional M2-branes, equivalently, discrete 3-form

holonomy at C
4/Zk orbifold singularity. We show that, much like its regular counterpart of

M = N , the theory at planar limit have integrability structure in the conformal dimension

spectrum of single trace operators. We first revisit the Yang-Baxter equation for a spin

chain system associated with the single trace operators. We show that the integrability by

itself does not preclude parity symmetry breaking. We construct two-parameter family of

parity non-invariant, alternating spin chain Hamiltonian involving three-site interactions

between 4 and 4 of SU(4)R. At weak ‘t Hooft coupling, we study the Chern-Simons

theory perturbatively and calculate anomalous dimension of single trace operators up to

two loops. The computation is essentially parallel to the regular case M = N . We find

that resulting spin chain Hamiltonian matches with the Hamiltonian derived from Yang-

Baxter equation, but to the one preserving parity symmetry. We give several intuitive

explanations why the parity symmetry breaking is not detected in the Chern-Simons spin

chain Hamiltonian at perturbative level. We suggest that open spin chain, associated with

open string excitations on giant gravitons or dibaryons, can detect discrete flat holonomy

and hence parity symmetry breaking through boundary field.
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1. Introduction

In continuation of remarkable development by Aharony, Bergman, Jafferis and Malda-

cena (ABJM) [1], Aharony, Bergman and Jafferis (ABJ) [2] identified further examples of

AdS/CFT correspondences: three-dimensional N = 6 superconformal Chern-Simons the-

ory with gauge group U(M)k ×U(N)−k, where k denotes the Chern-Simons level, is dual to

Type IIA string theory on AdS4 ×CP
3 [3] with BNS holonomy turned on over CP1 ⊂ CP3.

For consistency with flux quantization of Ramond-Ramond field strengths, the BNS holon-

omy is not arbitrary but takes a value in Zk (measured in string unit). From M-theory

viewpoint, the gravity dual background descends from AdS4×S
7/Zk once M-theoretic dis-

crete torsion is turned on over a torsion 3-cycle in S
7/Zk. The corresponding torsion flux

takes a value in H4(S7/Zk,Z) = Zk. In the limit M → N , these discrete fluxes are turned

off and the new correspondence [2] is reduced to the correspondence identified earlier [1].1

The purpose of this paper is to show that, much the same as the ABJM theory [5, 6], the

ABJ theory also exhibits integrability structure in the spectrum of anomalous dimensions

for single trace local operator.2 By extending the computations of [6], we shall find that the

spin chain Hamiltonian that governs two-loop operator mixing and anomalous dimensions

in ABJ theory is essentially the same as that of ABJM theory modulo suitable change of

perturbative coupling parameters.

We organized this paper as follows. In section 2, in comparison with the ABJM theory,

we list several new features of the ABJ theory that will be directly relevant for the quest

1In [2], the authors also proposed AdS/CFT correspondence for orientifold variants with N = 5 su-

perconformal symmetry. In what follows, for concreteness, we shall focus on the subsets with N = 6

superconformal symmetry. Lagrangian of these superconformal field theories were previously studied in [4].
2For other important works on integrability structure at the weak coupling limit, see [7, 8].
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of integrability structure. In section 3, we revisit the derivation of integrable spin chain

from Yang-Baxter equations. We emphasize that parity symmetry of the spin chain is

broken in general. We construct the most general parity non-invariant, integrable spin

chain Hamiltonian and show that, up to overall scaling, there are two-parameter family

of Hamiltonian. In section 4, we compute operator mixing and anomalous dimensions of

single trace operators at two loops. We find that the resulting Chern-Simons spin chain

Hamiltonian coincides with the spin chain Hamiltonian derived from Yang-Baxter equation.

In fact, the Hamiltonian is exactly the same as the Hamiltonian for ABJM theory [5, 6],

except that the coupling parameter N2 in the ABJM theory is now replaced by MN . In

section 5, we offer several arguments why the spin chain Hamiltonian does not detect parity

violation effect of the BNS holonomy and illustrate them by studying giant magnon. We

also suggest that the discrete holonomy may be visible for an open spin chain associated

with open string attached to giant graviton or dibaryon operators.

2. Aspects of ABJ theory

In the ABJ theory, since the number of fractional branes is a new parameter added to the

ABJM theory, there are three coupling parameters, M,N, k. In contrast to N = 4 super

Yang-Mills theory, a unique feature of the ABJ theory (as well as ABJM theory) is that

the coupling parameters are all integer-valued. In this section, we elaborate several notable

aspects of the ABJ theory that will become relevant for later investigation of integrability.

For these, we shall take the generalized ‘t Hooft planar limit (in the convention M ≥ N):

M, N, k −→ ∞ with λ ≡ N

k
, λ ≡ M

k
, b ≡ (M −N)

k
fixed , (2.1)

though some of the results are extendible beyond this limit. Among these, the parameter

b parity-odd and measures parity symmetry breaking effects in ABJ theory.

In this section, we elaborate several salient features of the ABJ theory that will become

directly relevant for our foregoing investigation on integrability structure.

• From the viewpoint of M2-branes probing C
4/Zk orbifold singularity, the ABJ theo-

ries arise when, in addition to N M2-branes, (M−N) fractional M2-branes are local-

ized at the orbifold singularity. In the much studied situation of N D3-branes probing

M5/Γ orbifold singularity, adding fractional D-branes [9, 10] at the orbifold singular-

ity [11, 12] led to running of otherwise constant gauge coupling parameter and hence

to loss of the conformal invariance. This implies that, in the large N limit, gravity

dual background is deformed away from AdS5 ×M5/Γ [13, 14]. In the ABJ theories,

even though fractional M2-branes are introduced, the supergravity background is not

deformed at all and retains AdS4 × S
7/Zk. We can understand this curious feature

from noting that the gauge-gravity correspondence at hand involves superconformal

Chern-Simons theories. In the latter theories, coupling parameters M,N, k are all

quantized to integer values. Therefore, at quantum level, these coupling parameters

cannot possibly run under renormalization group flow. As such, we expect that opera-

tor mixing and anomalous dimensions of gauge invariant composite operators are still

– 2 –
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organized in the planar limit M,N → ∞ as an analytic perturbative series expansion

of the ‘t Hooft coupling parameters (2.1) within finite radius of convergence.3

• Introducing fractional M2-branes or turning on BNS holonomy, the parity symmetry

is broken in the supergravity dual background and, in accordance with AdS/CFT cor-

respondence, in the superconformal Chern-Simons theory. Apparently, parity trans-

formation maps the Chern-Simons parameters by k to −k while holding M,N fixed.

In the planar limit (2.1), this maps b to −b while holding λ, λ fixed. We recall that

the parity symmetry P in ABJM theory was defined as, under xm → −xm,

P : (Am, Am, Y
I , Y †

I ) → (−Am,−Am, Y
†
I , Y

I). (2.2)

In particular, since Y I ↔ Y †
I , the parity exchanges the two isomorphic gauge groups,

U(N) and U(N). In the corresponding spin chain, this was identified with interchange

of two interlaced chains of 4’s and 4’s. From the viewpoint of SU(4) symmetry, this

is equivalent to charge conjugation. As such, the above (2 + 1)-dimensional parity

transformation acts on the spin chain as (1 + 1)-dimensional parity transformation:

P : Tr(Y I1Y †
J1

· · · Y InY †
Jn

) → Tr(Y JnY †
In

· · ·Y J1Y †
I1

). (2.3)

Hence, under this generalized parity transformation, the ABJM theory and the cor-

responding spin chain were manifestly invariant. Now, in the ABJ theory, the above

parity transformation cannot possibly be a symmetry since, among others, the two

gauge groups are different and cannot be exchanged. In fact, as we shall see below,

the parity maps one ABJ theory with a given gauge group to another with differ-

ent gauge group. Therefore, the newly identified correspondences of the ABJ theoy

offer an excellent playground for exploring physics associated with parity symmetry

and its breaking. In the quest of the integrability, this also raises very interesting

issues: Is integrability compatible with parity symmetry breaking? Is parity symme-

try breaking always reflected in the associated spin chain system? If so, what kind of

spin chain Hamiltonian and higher conserved charges does it lead to? How visible is

the parity symmetry breaking effect at weak and strong ‘t Hooft coupling regimes?

In the ABJM theory, the parity transformation mapped the theory to itself, viz. par-

ity invariant. In ABJ theory, the parity transformation relates one theory to another

in a rich manner. To see this, recall that the ABJ theory with U(M)k×U(N)−k gauge

group is realizable via regular and fractional D3-branes threading between two dia-

metrically separated (p, q)-branes of charge (1, 0) ⊕ (1, k). If we adiabatically move

(1, 0)-brane and (1, k)-brane relatively and exchange their locations, the (M − N)

fractional D3-branes will disappear on one interval of the two (p, q)-branes and the

k−(M−N) fractional D3-branes are created on the other interval [16, 17]. Therefore,

the original D3-branes Mk⊕N−k is transformed to the one Nk⊕(N+k−(M−N))−k.

3Recall that, in N = 4 super Yang-Mills theory, the radius of convergence of planar expansion is

|λ| = π
2 [15].
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Combining also with the parity transformed theory, we then have equivalence rela-

tions:

U(M)k × U(N)−k ≃ U(N)k × U(2N −M + k)−k ≃ U(N)k × U(M)−k. (2.4)

Notice that the relation is entirely among Chern-Simons theories. In particular, the

middle theory is always strongly coupled, since the ‘t Hooft coupling of the second

gauge group is always great than unity. This is exciting; in the quest of integrability

and its interpolation between weak and strong coupling limits, the above equivalence

relations may provide a new useful trick to extract physical observables such as (gen-

eralized) scaling functions not just at weak and strong ‘t Hooft coupling limits but

also at O(1) regimes (albeit the drawback that these are all in lower-dimensional field

theories).

• The number of fractional M2-branes is not arbitrary but is limited to 0 ≤ (M−N) ≤
k. This is most clearly seen from decoupling limit of (M −N) many fractional M2-

branes fromN many regular M2-branes. Low-energy dynamics of the fractional brane

is described by N = 3 supersymmetric pure Chern-Simons theory with gauge group

U(M−N)k. Quantum mechanically, the Chern-Simons level k of this theory ought to

remain the same. This can be understood, for example, from the brane construction

mentioned above: at all scales of D3-brane dynamics, the (p, q)-brane charges are held

fixed. But such a non-renormalization property turns out possible only if (M −N) ≤
k. To see this, we can sequentially integrate out superpartners of the gauge fields first

and then the gauge field. The first step yields a bosonic pure Chern-Simons theory

with gauge group U(M−N)k′ where k′ = k−(M−N)sign(k). The second step shifts

the Chern-Simons level further to k′′ = k′+(M−N)sign(k′). We see that the Chern-

Simons level at quantum level k′′ remains the same as the classical one k if and only

if (M −N) ≤ k. Stated in the planar limit (2.1), this quantum consistency restricts

the parity-odd coupling parameter b to take values less than unity. In particular, in

the strong coupling limit where supergravity dual description is effective, we expect

that parity symmetry breaking effect is completely invisible since b≪ λ, λ.

• AdS/CFT correspondence asserts that gauge invariant, single trace operators in the

ABJ theory are dual to free string excitation modes in AdS4 ×CP
3 with BNS holon-

omy over CP
1, valid at weak and strong ‘t Hooft coupling regime, respectively. In

particular, conformal dimension of the operators should match with excitation energy

of the string modes.4 As summarized in the appendix, the ABJ theory with gauge

group U(M)×U(N) is not much different from the ABJM theory: it possesses N = 6

superconformal symmetry with SO(6) ≃ SU(4) R-symmetry and contains two sets of

bi-fundamental scalar fields Y I , Y †
I (I = 1, 2, 3, 4) that transform as 4,4 under SU(4)

and as (M,N) and (M,N) under the gauge group U(M) × U(N). Therefore, the

4Classical integrability of semiclassical string on AdS4 × CP
3 was argued in [18 – 20, 6]. We find that,

even though discrete BNS holonomy is turned on, integrability extends trivially.
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single trace operators still take the form:

O = Tr(Y I1Y †
J1

· · ·Y ILY †
JL

)CJ1···JL

I1···IL

= Tr(Y †
J1
Y I1 · · ·Y †

JL
Y IL)CJ1···JL

I1···IL
, (2.5)

where now Tr and Tr refer to trace over U(M) and U(N), respectively. The chiral

primary operators, corresponding to the choice of (2.5) with CJ1···JL

I1···IL
totally symmet-

ric in both sets of indices and traceless, form the lightest states. They correspond to

the Kaluza-Klein supergravity modes on gravity dual background. Since the gravity

dual of the ABJ theory is still the same as the ABJM theory, viz. AdS4 ×CP
3, ABJ

claims that the spectrum of non-baryonic chiral primary operators is independent of

(M −N) and hence b.5 This entails an interesting question: is the spectrum and the

spectral distribution of all single trace operators, not just chiral primary operators,

independent of b?

3. Integrable spin chain from Yang-Baxter

Given the distinctive features as above, does the ABJ theory also exhibit an integrability

structure? If so, since the ABJ theory is parity non-invariant, we must address if integra-

bility structure is compatible with parity symmetry breaking. Paying attention to this, in

this section, we revisit derivation of the spin chain Hamiltonian associated with the single

trace operators (2.5).

Operator mixing under renormalization and their evolution in perturbation theory is

describable by a spin chain of total length 2L. From the structure of operators (2.5), we

see that the prospective spin chain involves two types of SUR(4) spins: 4 at odd lattice

sites and 4 at even lattice sites. Since we are dealing with gauge invariant operators, these

considerations are independent of actual values and relations of M,N in so far as they are

taken to the planar limit, M,N → ∞. It is thus natural to expect that the prospective

spin chain is again the same ‘alternating SU(4) spin chain’ of interlaced 4 and 4 as that

featured in the ABJM theory [5, 6].

Identification of prospective spin system starts with solving inhomogeneous Yang-

Baxter equations of SUR(4) R-matrices with varying representations on each site. Fol-

lowing the general procedure [22], the Yang-Baxter equations were solved in [5, 6]. In this

section, we shall repeat the procedure of [6] and emphasize that the putative SU(4) spin

chain is the ’alternating spin chain’ involving next-to-nearest neighbor interactions and

that the integrable spin chain extracted from the Yang-Baxter equations in general breaks

the parity symmetry.

As the elementary constituents are in the representations 4,4 of SU(4)R, we start with

R-matrices R
44(u) and R

44̄(u), where the upper indices denote SU(4) representations of

two spins involved in ‘scattering process’ and u, v denote spectral parameters. We demand

5ABJ argues that spectrum of baryonic chiral primary operators depends on b, so deviates from the

ABJM theory. We shall revisit excitation of baryonic operators later in section 5
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these R-matrices to satisfy two sets of Yang-Baxter equations:

R
44

12 (u− v)R
44

13 (u)R
44

23 (v) = R
44

23 (v)R44

13 (u)R44

12 (u− v) (3.1)

R
44

12 (u− v)R
44̄

13 (u)R
44̄

23 (v) = R
44̄

23 (v)R
44̄

13 (u)R
44

12 (u− v) (3.2)

Here, the lower indices i, j denote that the R matrix is acting on i-th and j-th site Vi ⊗Vj

of the full tensor product Hilbert space V1 ⊗ V2 ⊗ · · · ⊗ V2L. We find that the R-matrices

solving (3.1), (3.2) are the well known ones:

R
44(u) = uI + P and R

44̄(u) = −(u+ 2 + α)I + K (3.3)

where α is an arbitrary constant to be determined later. Here, we have introduced identity

operator I, trace operator K, and permutation operator P:

(Ikℓ)
IkIℓ

JkJℓ
= δIk

Jk
δIℓ

Jℓ
(Kkℓ)

IkIℓ

JkJℓ
= δIkIℓδJkJℓ

(Pkℓ)
IkIℓ

JkJℓ
= δIk

Jℓ
δIℓ

Jk
, (3.4)

acting as braiding operations mapping tensor product vector space Vk ⊗ Vℓ to itself.

Similarly, we also construct another set of R-matrices R
4̄4̄(u) and R

4̄4(u) for ’scattering

process’ of the specified quantum number constituents. They will generate another alter-

native spin chain system. Demanding them to fulfill the respective Yang-Baxter equations:

R
4̄4̄

12 (u− v)R
4̄4̄

13 (u)R
4̄4̄

23 (v) = R
4̄4̄

23 (v)R
4̄4̄

13 (u)R
4̄4̄

12 (u− v) (3.5)

R
44

12 (u− v)R
4̄4

13 (u)R
4̄4

23 (v) = R
4̄4

23 (v)R
4̄4

13 (u)R
44

12 (u− v) (3.6)

we find that the solution is given by

R
4̄4̄(u) = uI + P and R

4̄4(u) = −(u+ 2 + ᾱ)I + K , (3.7)

where ᾱ is an arbitrary constant.

In the two sets of Yang-Baxter equations, the constants α, ᾱ are undetermined. We

shall now restrict them by requiring unitarity. The unitarity of the combined spin chain

system sets the following conditions:

R
44(u)R

44(−u) = ρ(u)I

R
4̄4̄(u)R

4̄4̄(−u) = ρ̄(u) I

R
44̄(u)R

4̄4(−u) = σ(u) I (3.8)

where ρ(u) = ρ(−u), ρ̄(u) = ρ̄(−u), σ(u) are c-number functions. It follows that the first

two unitarity conditions are indeed satisfied for any α, ᾱ, while the last unitarity condition

is is satisfied only if α = −ᾱ. Without loss of generality, we shall set α = −ᾱ = 0.

Viewing (2.5) as 2L sites of alternating 4 and 4̄ in a row, we introduce monodromy

T-matrix

T0(u, a) = R
44

01 (u)R44̄

02 (u+ a)R44

03 (u)R44̄

04 (u+ a) · · ·R44

02L−1(u)R
44̄

02L(u+ a) , (3.9)

for one alternating chain and another monodromy T-matrix

T 0(u, ā) = R
4̄4

01 (u+ ā)R4̄4̄

02 (u)R4̄4

03 (u+ ā)R4̄4̄

03 (u) · · ·R4̄4

02L−1(u+ ā)R4̄4̄

02L(u) , (3.10)
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for the other alternating chain. The spectral parameters a, ā are a priori independent since

the two spin chains are independent. Yet, intuitively, we expect they are related each

other since every lattice site of the inhomogeneous spin chain must have a unique spectral

parameter. For now, we shall proceed without a priori such an input and verify that the

two are indeed related as an outcome of derivation of the Hamiltonian. Both monodromy

T-matrices are defined with respect to an auxiliary zeroth space. These monodromy T-

matrices can be shown to fulfill the Yang-Baxter equations:

R
44

00′(u− v)T0(u, a)T0′(v, a) = T0′(v, a)T0(u, a)R
44

00′(u− v) , (3.11)

R
4̄4̄

00′(u− v)T 0(u, ā)T 0′(v, ā) = T 0′(v, ā)T 0(u, ā)R
4̄4̄

00′(u− v) . (3.12)

and

R
44̄

00′(u− v + a)T0(u, a)T 0′(v,−a) = T 0′(v,−a)T0(u, a)R
44̄

00′(u− v + a) . (3.13)

We also define transfer matrix by taking trace of the T matrix over the auxiliary space:

τalt(u, a) = Tr
0
T0(u, a) . (3.14)

and

τalt(u, ā) = Tr
0
T 0(u, ā) . (3.15)

It then follows from the Yang-Baxter equations that

[τalt(u, a), τalt(v, a)] = 0

[τalt(u, ā), τalt(v, ā)] = 0 , (3.16)

and

[τalt(u, a), τ̄alt(v,−a)] = 0 . (3.17)

Here, in the first two equations, a, ā are arbitrary and denote two undetermined spectral

parameters. These parameters are restricted further if we demand the last equation to

hold. We showed in [6] that the two alternating transfer matrices commute each other if

and only if ā = −a.
Commuting set of conserved charges are obtained6 from moments of the transfer matrix

with respect to the spectral parameter u. By definition, the Hamiltonian is obtained from

the first moment of τalt: H ≡ d log τalt(u, a)|u=0 where d ≡ ∂/∂u. The computational

procedure is standard in the context of alternating spin chain and straightforward. After

some computation, we found the 44 spin chain Hamiltonian acting on 4 residing sites as

Halt(a) =
L∑

ℓ=1

H2ℓ−1(a)

6The following derivation of Hamiltonian is valid only for L ≥ 2. This means that the energy eigenvalues

of the following Hamiltonian for the case L = 1 do not agree with true energy eigenvalues.

– 7 –
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where

H2ℓ−1(a) = −(2 − a)I − (4 − a2)P2ℓ−1,2ℓ+1

−(a− 2)P2ℓ−1,2ℓ+1K2ℓ−1,2ℓ + (a+ 2)P2ℓ−1,2ℓ+1K2ℓ,2ℓ+1 , (3.18)

Here, we scaled the Hamiltonian by multiplying (a2 −4). By the same procedure, from the

first moment of τalt: H =≡ d log τalt(v, ā)|v=0, we also found the Hamiltonian for the 44

spin chain acting on 4 sites as

H
alt

(a) =

L∑

ℓ=1

H2ℓ(a)

where

H2ℓ(a) = −(2 + a)I − (4 − a2)P2ℓ,2ℓ+2

+(a+ 2)P2ℓ,2ℓ+2K2ℓ,2ℓ+1 − (a− 2)P2ℓ,2ℓ+2K2ℓ+1,2ℓ+2 , (3.19)

where we have replaced ā by a using the relation ā = −a. See [6] for details of the derivation.

To have the spin chain Hamiltonian hermitian, as shown in [6], we choose the parameter

a purely imaginary, a = iγ. Moreover, since there is no parity symmetry mapping even sites

to odd sites or vice versa, we can have different coupling parameters and different ground

state energy density. Thus, the most general integrable spin chain Hamiltonian reads

HYBE =

L∑

ℓ=1

[
Jo (H2ℓ−1(γ) − ǫoI) + Je

(
H2ℓ(γ) − ǫeI

) ]
. (3.20)

Here, having two mutually commuting spin chain Hamiltonians by our choice of the spec-

tral parameters, we introduced two coupling parameters Je, Jo and two ground-state energy

parameters ǫe, ǫo for the even and the odd alternate spin chains, respectively. Overall, the

spin chain Hamiltonian depends on five parameters (Je, ǫe), (Jo, ǫo) and γ. Some of these

parameters can be fixed from considerations of underlying physics of the system. Overall

scale can be set to a choice of convention. If we invoke supersymmetry, the ground-state en-

ergy parameters can be fixed by demanding that all chiral primary operators have vanishing

energy. This still leaves out two free parameters in the Hamiltonian. For general choice of

these two parameters, the integrable spin chain Hamiltonian (3.20) is parity non-invariant.

In the ABJM theory of N = M , the single trace operators had the exchange symmetry

4 ↔ 4. This is the same as the charge conjugation symmetry, equivalently, reflection

symmetry in dual lattice. We thus put a = i0 in that case. Here, however, since the parity

symmetry is broken, a priori, there is no reason we stick to this case. This implies that

the spin chain Hamiltonian for ABJ theory may belong to a family of Hamiltonian of the

above type. In particular, generically, the parity symmetry is broken.

Despite all these, in the next section, we shall find that the Hamiltonian that actually

arise from the planar perturbation theory turns out:

HCS =
1

4
λλ

2L∑

ℓ=1

Hℓ,ℓ+1,ℓ+2 (3.21)

– 8 –
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with

Hℓ,ℓ+1,ℓ+2 =
[
4I − 4Pℓ,ℓ+2 + 2Pℓ,ℓ+2Kℓ,ℓ+1 + 2Pℓ,ℓ+2Kℓ+1,ℓ+2

]
(3.22)

viz. the choice Je = Jo = λλ/4, ǫe = ǫo = −6 and γ = 0 in (3.20). This Hamiltonian

is exactly the same as the spin chain Hamiltonian of ABJM theory except that the cou-

pling parameter λ2 is replaced by λλ. In particular, the Hamiltonian is completely parity

invariant. Stated otherwise, the parity non-invariance of the ABJ theory is not reflected

in the spin chain Hamiltonian associated with the single trace operators. We shall discuss

reasons behind this in section 5.

4. Integrable spin chain from Chern-Simons

In this section, we describe the two loop spin chain Hamiltonian by the direct evaluation

of the anomalous dimension matrix of the suggested operators.

In general, as well understood from general considerations of the renormalization the-

ory, the divergence in one-particle irreducible diagrams with one insertion of a composite

operator contain divergences that are proportional to other composite operators. There-

fore, at each order in perturbation theory, all composite operators must be renormalized

simultaneously. In addition, the wave function renormalization of elementary fields needs

to be taken into account. This leads to the general structure of the renormalization matrix:

OA
bare(Ybare, Y

†
bare) =

∑

B

ZA
BOB

ren(ZYren, ZY
†
ren) (4.1)

For the operators we are interested in, this takes the form of

OA
bare =

∑

B

ZA
B(Λ)OB

ren (4.2)

with the UV cut-off scale Λ. Therefore, the anomalous dimension matrix ∆ is given by

∆ =
d logZ

d log Λ
. (4.3)

Below we shall compute anomalous dimension matrix of the following single trace opera-

tor (2.5) in the basis:

O(I)
(J) = Tr

(
Y I1Y †

J1
Y I2Y †

J2
· · ·Y ILY †

JL

)
. (4.4)

The action for the N = 6 U(M) ×U(N) superconformal Chern-Simons theory is the same

as that of the ABJM theory except the change in the gauge symmetry and the matter

representation. We relegate its detailed structure to the appendix.

Basically, the Feynman diagrams and integrals for the U(M) × U(N) theory with

M 6= N (ABJ theory) are not much different from those of the M = N one (ABJM

theory). The general power counting argument shows that the logarithmic divergence

arises only at even loops. Therefore, nontrivial contribution to the anomalous dimension
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Figure 1: Two loop contribution of scalar sextet interaction to anomalous dimension matrix of O.

again starts at two-loop order. For the bi-fundamental matter fields with indices (m, n̄),

any loops of the Feynman diagram involve a sum over the fundamental index m or the anti-

fundamental index n̄ giving the factor M and N respectively. Then the planar diagrams

are now organized as a double power series of the two ‘t Hooft parameters λ and λ̄. At

two loops, the general planar contributions include terms proportional to λ2, λ̄2 and λλ̄.

As we shall explain below, for two-loop anomalous dimension matrix, we find that all the

purely fundamental (λ̄2) and purely anti-fundamental ( λ2) contributions cancel among

themselves and the remaining mixed contributions lead to the two-loop Hamiltonian:

H2−loops = λλ̄
2L∑

ℓ=1

[
I − Pℓ,ℓ+2 +

1

2
Pℓ,ℓ+2Kℓ,ℓ+1 +

1

2
Pℓ,ℓ+2Kℓ+1,ℓ+2

]
(4.5)

which is integrable clearly.

In this section, we explain derivation of the above Hamiltonian, not by repeating all the

computation and but just counting λ and λ̄ factors based on the computation of ref. [6].

Except these extra counting factors, all the remaining Feynman integrals are found to

have the same expressions. In particular, there is no extra diagram that contribute to the

Hamiltonian when M is taken different from N.

We begin with the three-site scalar sextet contribution. The Feynman integral and

numerical factors are all the same as the M = N case of ref. [6] except λ2 is now replaced

by λλ̄. The Feynman diagrams are depicted in figure 1. One may check that the diagram

involving the scalar sextet potential has always one loop of scalar fundamental and the other

loop of scalar anti-fundamental. Therefore, the contribution is of mixed type and becomes

HB = λλ̄

2L∑

ℓ=1

[
1

2
I − Pℓ,ℓ+2 +

1

2
Pℓ,ℓ+2Kℓ,ℓ+1 +

1

2
Pℓ,ℓ+2Kℓ+1,ℓ+2 −

1

2
Kℓ,ℓ+1

]
. (4.6)

Next we turn to the two-site gauge and fermion interactions. As shown in figure 2, there

are three relevant non-vanishing contributions. The first is the diamagnetic gauge diagram

contributing as a I type operator. There are one scalar loop and one gauge loop. One finds

that the loop are always of the same type, i.e. either λ2 or λ̄2. ForM = N case the contribu-

tion for each site was −λ2

4 I. Now one has an alternating contribution of −λ2

4 I and − λ̄2

4 I or

Hgauge
I =

(
λ2 + λ̄2

) 2L∑

ℓ=1

[
− 1

8
I

]
. (4.7)

On the other hand, the two site fermion exchange contribution is always mixed type

leading to the K operator. There could be also mixed I type contribution in principle but
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Figure 2: Two loop contribution of gauge and fermion exchange interaction to anomalous dimen-

sion of O.

p k + p

l

p

k + l

(a) (b) (c)

Figure 3: Two loop contribution of diamagnetic gauge interactions to wave function renormaliza-

tion of Y, Y †. They contribute to I operator in the dilatation operator.

they cancel among themselves with the specific form of the Yukawa potential we have.

Therefore, the fermion two-site contribution becomes

HF = λλ̄
2L∑

ℓ=1

Kℓ,ℓ+1 . (4.8)

The last diagram of figure 2 describes the two-site gauge K type contribution. It is simple

to check that this contribution is of mixed type, whose expression reads

Hgauge
K = λλ̄

2L∑

ℓ=1

[
− 1

2
Kℓ,ℓ+1

]
. (4.9)

We now turn to the contribution of the one-site interactions. Adding up all the two-

site interactions to the three-site interaction, we see that terms involving K operator cancel

out one another. So, up to overall (volume-dependent) shift of the ground state energy,

the dilatation operator agrees with the alternating spin chain Hamiltonian we derived. As

we are dealing with superconformal field theory, spectrum of dilatation generator bears an

absolute meaning. Therefore, to check the consistency with the supersymmetry, we shall

now compute terms arising from wave function renormalization of Y, Y †. These are all the

remaining contributions to anomalous dimension of composite operator O.

Wave function renormalization to Y, Y † arises from all three types of interactions.

Even though there are huge numbers of planar Feynman diagrams that could potentially

contribute to wave function renormalization, many of them vanishes identically or cancel

one another.

There are three types of non-vanishing gauge contributions as shown figures 3-5. For

the gauge diamagnetic contribution depicted in figure 3, only the last one is of mixed type.
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Figure 4: Two loop contribution of paramagnetic gauge interactions to wave function renormal-

ization of Y, Y †. They contribute to I operator in the dilatation operator.

p p+ k p− l

k + l

p

k l

(a) (b)

Figure 5: Two loop contribution of Chern-Simons interaction to wave function renormalization of

Y, Y †. They contribute to I operators in the dilatation operator.

For the M = N case, each diagram contributes respectively by −λ2

24 I, −λ2

24 I and λ2

6 I to

the anomalous dimension for each site, which add up to λ2

12 I. For the present case, their

contribution is then

Hdia
Z =

[
− λ2

24
− λ̄2

24
+
λλ̄

6

] 2L∑

ℓ=1

I . (4.10)

The contributions of the gauge paramagnetic interaction in figure 4 are obviously all mixed

type. Hence, their contribution becomes

Hpara
Z =

2λλ̄

3

2L∑

ℓ=1

I . (4.11)

The contributions of the Chern-Simons interaction in figure 5 are of types λ2 or λ̄2. Its

contribution now becomes

Hcs
Z =

[
λ2

6
+
λ̄2

6

] 2L∑

ℓ=1

I . (4.12)

The fermion pair interactions to the wave function renormalization are depicted in

figure 6 and they are all of mixed type. Their contributions are

Hyukawa
Z = λλ̄

[
4

3
+ 1

] 2L∑

ℓ=1

I . (4.13)

Finally, we consider the two-loop contribution from the vacuum polarization. Since the

Chern-Simons gauge loop and the corresponding ghost loop contributions cancel with each

other precisely, only the matter loops have the non-vanishing contributions. The non-

vanishing two loop contributions of vacuum polarizations are all mixed type, which are
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Figure 6: Two loop contribution of fermion pair interaction to wave function renormalization of

Y, Y †. They contribute to I operators in the dilatation operator.

p k + l + p p

klk

k + l

(a) (b) (c) (d)

Figure 7: Two loop contribution of vacuum polarization to wave function renormalization of Y, Y †.

depicted in figure 7. Their contribution is

Hvacuum
Z = −8λλ̄

3

2L∑

ℓ=1

I . (4.14)

Summing up all these wave function renormalization to Y, Y †, we find their contribution

to the anomalous dimension matrix as

H Z =

[
λ2

8
+
λ̄2

8
+
λλ̄

2

] 2L∑

ℓ=1

I . (4.15)

One can see that the λ2 and λ̄2 contributions in (4.15) cancel with those of (4.7). Thus,

one finds that only mixed type contributions remain. Adding up all contributions,

Htotal = HB +Hgauge
I +HF +Hgauge

K +HZ (4.16)

we get the result (4.5). As claimed, this is precisely the parity-symmetric alternating spin

chain Hamiltonian we obtained from the mixed set of the relevant Yang-Baxter equations.

Finally, let us comment on the two loop wrapping interaction of L = 1 case as a

checkpoint of internal consistency with N = 6 supersymmetry, extended to M 6= N .

The 4 ⊗ 4̄ representation is decomposed irreducibly into the traceless part, 15, and the

trace part, 1. The multiplet 15 is chiral primary operator, so their conformal dimension

ought to be protected by supersymmetry. However there is no contribution of three-site

scalar interaction. Thus naively, the protection of the above chiral primary operator is not

possible. However, spectrum of the gauge invariant operator of length 2L = 2 will receive

contributions from wrapping diagrams already at leading order, which we will identify.
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Figure 8: Two loop wrapping interaction contribution to the shortest gauge invariant operators.

(a) fermion field wrapping, (b) gauge field wrapping, (c) a new gauge triangle.

From the above computations, the sum of the two-site and the one-site contributions is

H2 +H1 = λλ̄

[
1

2
K +

1

2
I

]
× 2 = λλ̄

[
K + I

]
, (4.17)

where the multiplication factor two comes from the number of sites.

The wrapping contributions in figure 8 are all mixed type. The evaluation of the

corresponding Feynman integrals are the same as the case of M = N except replacing λ2

by λλ̄. The results is

Hwrap = λλ̄
[

I + 2(K − I) − K

]
= λλ̄

[
K − I

]
, (4.18)

Putting both the original and the wrapping diagram contributions together, the full Hamil-

tonian of 2L = 2 operator is given by

H2L=2 = 2λλ̄K . (4.19)

Notice that the part proportional to I operator is canceled between the original and the

wrapping interaction contributions. One thus check that the chiral primary operators 15

indeed has a vanishing anomalous dimension since, by definition, it has no trace part and

is annihilated by K operator. For the singlet 1, |s〉 = 1
2 |II〉, the anomalous dimension is

H|s〉 = 8 λλ̄ |s〉 . (4.20)

So far, we computed the spectrum of the shortest operators without a priori assumption

of supersymmetry. As a consistency check, we now compare these spectra with their

superpartners. Recall that length 2ℓ operators with Dynkin labels (ℓ− 2m,m+ n, ℓ− 2n)

and length 2ℓ−2 operators with Dynkin labels (ℓ−2m,m+n−2, ℓ−2n) are superpartners

each other. Here, we have the simplest situation: the L = 1 operator 1 of Dynkin labels

(0, 0, 0) is the superpartner of L = 2 operator 20 of Dynkin labels (0, 2, 0). Using the

results of ref. [5], the anomalous dimension of the latter can be found as 8λλ̄, and matches

perfectly with our computation.

5. Further discussions

The most salient feature of our results is that, though the Yang-Baxter equations and hence

the integrability structure permit it, the spin chain Hamiltonian derived from the ABJ the-

ory at two loops does not show parity symmetry breaking. In this section, we elaborate
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further regarding this result and also provide intuitive (albeit heuristic) argument for the

reason why.

• Weak coupling limit: closed spin chains

The spin chain is, roughly speaking, weak coupling counterpart of the semiclassical

string propagating on AdS4 × CP3 with discrete BNS holonomy. On the other hand,

the supergravity dual background of the ABJ theory is given by

ds2 = R2
s

[
1

4
ds2(AdS4) + ds2(CP3)

]

e2φ =
R2

s

k2

F4 =
3

8
kR2

s ǫ̂4

F2 = kdω = k J

BNS = b J , (5.1)

where J is the Kahler two-form threading the CP
1 inside CP

3. Notice that the

curvature radius is

R2
s = 2

5

2π
√
λ , (5.2)

is exactly the same as the background of ABJM theory, viz. the curvature radius

remains unchanged by turning on the BNS holonomy. As such, the spectrum of light

fields is unaffected by the discrete BNS holonomy. This is consistent with ABJ’s

claim that the spectrum of all non-baryonic chiral primary operators is independent

of b but also goes beyond, asserting that all string spectrum is independent of the

discrete holonomy.

Given that the spectrum of chiral primary operators is independent of b, it is not sur-

prising that the spectrum of all single trace operators (2.5) is also independent of b as

well. Consider a closed, semiclassical string propagating in the background (5.1). The

string is macroscopic and propagates freely with the worldsheet topology of cylinder.

This is the strong coupling counterpart of a single trace operator in the planar limit.

Since the worldsheet has topology of cylinder, the integral over the pullback of the

discrete BNS holonomy would be zero. ABJ argues further that, at strong ‘t Hooft

coupling regime, all the U(M)k × U(N)−k theories with M = N,N + 1, . . . , N + k

are all similar to each other, since the only difference is the discrete BNS holonomy.

Extrapolating this to the weak ‘t Hooft coupling regime, it then seems that all these

theories are identical to all orders in the planar perturbation theory. Our result that

the spin chain Hamiltonian of single trace operators is parity invariant fits to these

ABJ arguments.

On the other hand, if the string trajectory wraps around CP1 over which the dis-

crete BNS holonomy is turned on, the integral will be nonzero. In fact, this leads to

the worldsheet instanton effect whose strength scales as exp(−
√
λ). Transcribed to
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the weak coupling limit, we conjecture that these worldsheet instanton effects may

correspond to a class of unsuppressed fluctuations of the length of the single trace

operators. These fluctuations are not generic ones, since they must be the counter-

part of worldsheet topology of sphere. At present, though, it is unclear what precise

nature of these fluctuations are.

Putting these considerations together, the (M − N) dependent effect is completely

suppressed at the strong ‘t Hooft coupling limit (modulo worldsheet instanton effect)

and is most pronounced at the weak ‘t Hooft coupling limit, as reflected through the

coupling parameter λλ = λ2(1+ |b|). Still, we found that the parity symmetry break-

ing effect, proportional to the sign of (M−N), is invisible in the single trace operators.

• Strong coupling limit: giant magnon

Is the parity symmetry breaking visible at strong coupling limit, λ, λ→ ∞? Because

of quantum consistency, as discussed in section 2, the coupling parameter b is re-

stricted to a discrete value ranging over [0, 1]. Therefore, in the limit λ, λ → ∞, we

expect that parity symmetry breaking effect is completely suppressed to the order

O(1/λ, 1/λ). Below, we confirm such expectation by demonstrating that the spec-

trum of a giant magnon in the gravity dual of the ABJ theory is exactly the same as

that in the gravity dual of the ABJM theory.

We parametrize the CP3 metric as

ds2 = dξ2 +
sin2 2ξ

4

(
dψ +

cos θ1
2

dφ1 −
cos θ2

2
dφ2

)2

+
1

4
cos2 ξ(dθ2

1 + sin2 θ1dφ
2
1)

+
1

4
sin2 ξ(dθ2

2 + sin2 θ2dφ
2
2) (5.3)

The BNS potential is

BNS = − b
2

(
sin 2ξdξ ∧ (2dψ + cos θ1dφ1 − cos θ2dφ2)

+ cos2 ξ sin θ1dθ1 ∧ dφ1 + sin2 ξ sin θ2dθ2 ∧ dφ2

)
. (5.4)

We work in the conformal gauge-fixing and choose the static gauge t = τ . We set

ξ and ψ fixed and identify θ1 = θ2 = θ and φ1 = φ2 = φ. That is, we restrict the

solution to the diagonal SU(2) sector.

The relevant bosonic part of the Type IIA superstring worldsheet action becomes

S =

∫
dτ

∫ r

−r

dσ

[
π
√

2λ

4π

(
(∂z)2

1 − z2
+ (1 − z2)(∂φ)2

)
+

b

4π
(żφ′ − z′φ̇)

]
(5.5)

where z = cos θ. In this set-up, the Virasoro constraints

ż2 + z′2

1 − z2
+ (1 − z2)(φ̇2 + φ′

2
) = 1 ,

ż z′

1 − z2
+ (1 − z2)φ̇ φ′ = 0 (5.6)
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have to be imposed as well. The energy density is uniform in the static gauge and

the string energy is proportional to the spatial coordinate size:

E =
π
√

2λ

2π
2r . (5.7)

With an ansatz,

z = z(σ − vωt) , φ = ωτ + ϕ(σ − vωt) , (5.8)

the equations of motion are reduced to

(z′)2 =
ω2

(1 − v2ω2)2

(
z2 − 1 +

1

ω2

)(
1 − v2 − z2

)

ϕ′ =
vω2

(1 − v2ω2)

z2 − 1 + 1
ω2

1 − z2
. (5.9)

The equation of motion is not affected by the BNS field. The worldsheet momentum

p is from the
∫ r

−r
(x−)′ with x− = t+ φ, which equals to ∆φ. Hence it is independent

of b. The expression for the angular momentum is affected by

J =

∫ r

−r

(
π
√

2λ

4π
(1 − z2)φ̇− b

4π
z′

)

(5.10)

but, on the solution, its value does not change due to the boundary condition of

z(−r) = z(r). The general solution can found as [24]

z =

√
1 − v2

ω
√
η

dn

(
σ − vτ

√
η
√

1 − v2
, η

)
(5.11)

where dn(σ, k2) is the Jacobi elliptic function and we introduced the parameter η by

η =
1 − ω2v2

ω2(1 − v2)
. (5.12)

The range parameter r is given by
√

1 − v2√ηK(
√
η) where K(x) is the complete

elliptic integral. For simplicity, consider the infinite size limit ω → 1.7 The solution

in this limit becomes

z =
√

1 − v2sech

(
σ − vτ√
1 − v2

)
. (5.13)

with the worldsheet momentum given by p = 2cos−1 v. The spectrum

E − J =
√

2λ
∣∣∣sin

p

2

∣∣∣ , (5.14)

remains unchanged, thus showing no b-dependence nor parity symmetry breaking

effect.

7It is trivial to extend the following analysis to a finite size case.
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• Weak coupling limit revisited: open spin chain

Though effect of the discrete BNS holonomy is invisible to closed strings (up to the

aforementioned worldsheet instanton effect), the holonomy certainly affects spectrum

of heavier string states such as D-branes that wrap around CP1 over which the discrete

BNS holonomy is turned on. These D-branes are giant gravitons and di-baryons and

their excitation is described by open strings attached to them. Again, as for the closed

string case, we see that the effect is suppressed in large ‘t Hooft coupling limit, while it

could be pronounced in small ‘t Hooft coupling limit. From the string worldsheet ac-

tion (5.5), we expect that the boundary condition gives rise to at most O(1/λ) effect.

Transcribed again to the weak ‘t Hooft coupling regime, a natural setting where

the parity symmetry breaking can be seen is the open spin chain attached to gi-

ant gravitons or baryonic operators. The effect of (M − N) should be reflected to

possible types boundary condition of the open spin chain. For example, since the

BNS holonomy takes (M − N) discrete values, we expect that there are (M − N)

types of boundary conditions. For gauge group U(M)×U(N), the baryonic operator

ǫa1···aM
ǫb1···bNY I1a1

b1 · · ·Y INaN
bN

is not a gauge singlet but transforms as (M−N)-th

antisymmetric product of fundamentals of the U(M) gauge group. It is natural to

expect that the (M − N) types of open spin chain boundary conditions are associ-

ated with the multiplicity of these baryonic operator. For N = 4 super Yang-Mills

theory, such configuration of open spin chain was studied [25]. In fact, boundary

reflection matrices were determined for the tensor structure [26] and for the dressing

phases [27, 28]. We expect similar development can be made in the ABJ theory with

the new twist of the multiple boundary conditions. We are currently investigating

this and will report the results elsewhere.

Finally, since the spin chain Hamiltonian of the ABJ theory takes the same form as the

ABJM theory, diagonalization of the transfer matrices proceeds the same manner. Thus,

the Bethe ansatz equations of SO(6) sector [5, 6] and of full OSp(6|4,R) [5] will have exactly

the same form except that λ2 of the ABJM theory counterpart is now replaced by λλ.
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A. N = 6 U(M) × U(N) super Chern-Simons theory

• Gauge and global symmetries:

gauge symmetry : U(M) ⊗ U(N)

global symmetry : SU(4) (A.1)

We denote trace over U(M) and U(N) as Tr and Tr, respectively.

• On-shell fields are gauge fields, complexified Hermitian scalars and Majorana spinors

(I = 1, 2, 3, 4):

Am : Adj (U(M)); Am : Adj U(N)

Y I = (X1 + iX5,X2 + iX6,X3 − iX7,X4 − iX8) : (M,N;4)

Y †
I = (X1 − iX5,X2 − iX6,X3 + iX7,X4 + iX8) : (M,N;4)

ΨI = (ψ2 + iχ2,−ψ1 − iχ1, ψ4 − iχ4,−ψ3 + iχ3) : (M,N;4)

Ψ†I = (ψ2 − iχ2,−ψ1 + iχ1, ψ4 + iχ4,−ψ3 − iχ3) : (M,N;4) (A.2)

• action:

I =

∫

R1,2

[
k

4π
ǫmnpTr

(
Am∂nAp +

2i

3
AmAnAp

)
− k

4π
ǫmnpTr

(
Am∂nAp +

2i

3
AmAnAp

)

+
1

2
Tr
(
−(DmY )†ID

mY I + iΨ†ID/ΨI

)
+

1

2
Tr
(
−DmY

I(DmY )†I + iΨID/Ψ
†I
)

−VF − VB

]
(A.3)

Here, covariant derivatives are defined as

DmY
I = ∂mY

I + iAmY
I − iY IAm , DmY

†
I = ∂mY

†
I + iAmY

†
I − iY †

I Am (A.4)

and similarly for fermions ΨI ,Ψ
†I . Potential terms are

VF =
2πi

k
Tr
[
Y †

I Y
IΨ†JΨJ − 2Y †

I Y
JΨ†IΨJ + ǫIJKLY †

I ΨJY
†
KΨL

]

−2πi

k
Tr
[
Y IY †

I ΨJΨ†J − 2Y IY †
J ΨIΨ

†J + ǫIJKLY
IΨ†JY KΨ†L

]
(A.5)

and

VB = −1

3

(
2π

k

)2

Tr
[
Y †

I Y
JY †

J Y
KY †

KY
I + Y †

I Y
IY †

J Y
JY †

KY
K

+4Y †
I Y

JY †
KY

IY †
J Y

K − 6Y †
I Y

IY †
J Y

KY †
KY

J
]

(A.6)

At quantum level, since the Chern-Simons term shifts by an integer multiple of 8π2, k

should be integrally quantized.
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